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Abstract  Across the United States  (U.S.), many 
communities experience disproportionate expo-
sure to environmental health hazards due to their 
proximity to coal-fired power plants and associated 
coal ash disposal sites. These facilities release toxic 
heavy metals such as arsenic, mercury, and lead into 
the surrounding environment, posing serious public 

health risks. Although prior research has documented  
adverse health effects of coal-fired power plants,  few 
studies have specifically examined the relationship 
between cancer incidence and  proximity to coal ash 
impoundments, as well as exposure to elevated con-
centrations of toxic constituents in coal ash. Using 
complementary contingency table analyses, bivariate 
spatial association techniques, and spatial regression 
methods, this study finds consistent evidence that  
counties containing or adjacent to coal ash impound-
ments exhibit significantly higher cancer incidence 
rates  compared to more distant counties, even after 
adjusting for potential confounders. Incidence rates 
for both total cancer and lung cancer were signifi-
cantly associated with smoking, drinking, and physi-
cal inactivity, corroborating prior research on these 
behavioral risk factors. The lung cancer model further 
revealed significant positive associations between 
cancer incidence and PM₂.₅, arsenic concentrations, 
and airborne cancer risk scores, highlighting spe-
cific environmental risk factors for the disease. These 
findings strengthen the evidence linking coal ash 
exposure to adverse health outcomes and underscore 
the urgent need for robust enforcement and compli-
ance measures to protect communities from coal ash 
contamination.
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Introduction

Coal ash, also known as Coal Combustion Residuals 
(CCR), is primarily a byproduct of burning coal for 
electricity generation (Deonarine et  al., 2023). The 
U.S. Environmental Protection Agency (EPA) esti-
mates that approximately 70 million tons of coal ash 
are produced annually in the United States (U.S.), the 
second largest types of industrial waste after mining 
operations (American Coal Ash Association, 2023; 
U.S. Environmental Protection Agency, 2025a). Coal 
ash typically contains higher concentrations of heavy 
metals than the original coal, as the combustion pro-
cess enriches these toxic elements in the residual ash 
(Altıkulaç et al., 2022; Deonarine et al., 2015; Zierold 
et  al., 2021). Although the U.S. EPA has not classi-
fied coal ash as hazardous, chronic exposure to these 
substances has been linked to increased rates of lung 
cancer, cardiovascular disease, birth defects, and 
other serious health outcomes in nearby populations 
(Amster, 2021; Daouda et  al., 2021; Gottlieb et  al., 
2010; Ruhl et al., 2009; Tomlinson et al., 2024).

Coal ash is commonly disposed of in open-air stor-
age impoundments or landfills located near coal-fired 
power plants because on-site disposal is less costly 
and subject to fewer regulatory constraints (Sears 
& Zierold, 2017; U.S. Environmental Protection 
Agency, 2025b). There are approximately 1400 coal 
ash storage sites across 45 U.S. states, collectively 
holding over 3 billion tons of coal ash (Sierra Club, 
2014). Many of these facilities lack critical safety 
infrastructure—such as proper landfill capping and 
impoundment lining—leaving surrounding communi-
ties exposed to significant environmental and health 
risks. Coal ash can contaminate the environment 
through airborne particle dispersal or by leaching into 
nearby soil and water sources. In addition to chronic 
exposure risks, catastrophic events such as the 2008 
Kingston Fossil Plant spill and the 2014 Dan River 
breach have demonstrated the potential for large-scale 
environmental and public health disasters (Gaffney, 
2018).

Existing research indicates that communities liv-
ing near coal-fired power plants face elevated cancer 
risks primarily due to long-term exposure to heavy 
metals (e.g., arsenic, cadmium, lead, etc.) in coal ash, 
many of which are known carcinogens that contrib-
ute to tumor development and progression (Khlifi & 
Hamza-Chaffai, 2010; Kravchenko & Lyerly, 2018; 

Kumari et  al., 2023; Whiteside & Herndon, 2018). 
The International Agency for Research on Cancer 
(IARC) identifies arsenic and cadmium compounds 
as Group 1 carcinogens, indicating they are proven to 
cause cancer in humans (Waalkes, 2019). Exposure to 
these substances is linked to a higher risk of several 
cancers, with lung cancer being particularly promi-
nent. Lead is classified as a probable human carcino-
gen and is linked to cancers of the kidney, brain, and 
lung (Balali-Mood et  al., 2021). According to the 
EPA, individuals living near certain unlined coal ash 
ponds and relying on groundwater for drinking face a 
1 in 50 risk of developing cancer due to arsenic con-
tamination—an exposure level 2000 times higher than 
the EPA’s acceptable cancer risk threshold and even 
greater than the risk associated with smoking a pack 
of cigarettes daily (U.S. Environmental Protection 
Agency, 2010b). A later study examining the spatial 
disparities in residence at the time of cancer diagnosis 
in relation to coal-fired power plants in South Korea 
found significant higher levels of esophageal, stom-
ach, liver, and lung cancer incidence among females 
residing near power plants (Han et  al., 2024). Addi-
tionally, particulate matter released from coal-fired 
power plants or contained in coal ash is another major 
carcinogenic factor (Munawer, 2018). The fine parti-
cles in coal ash can be inhaled deep into the lungs, 
where they can cause inflammation, oxidative stress, 
and tissue damage, potentially leading to the develop-
ment of lung cancer over time (Kentros et al., 2024; 
Lockwood & Evans, 2014).

While previous studies have explored the associa-
tions between coal-fired power plants and cancer risk 
(Benedetti et  al., 2001; Collarile et  al., 2017; Han 
et al., 2024; Ige et al., 2024), relatively few have spe-
cifically examined the spatial relationship between 
cancer incidence and proximity to coal-ash storage 
facilities (Kravchenko & Lyerly, 2018), as well as its 
connection with heavy metal exposure (Hagemeyer 
et  al., 2019; Zhang & Zierold, 2024). More impor-
tantly, government regulation of coal ash and public 
awareness of the health risks posed by coal ash in the 
U.S. remains limited (U.S. Environmental Protec-
tion Agency, 2010a). Many residents living near coal 
ash disposal sites are unaware that the ash contains 
hazardous contaminants or that exposure can occur 
via air, water, and soil (Gaffney, 2023). This study 
seeks to address these gaps by analyzing the eco-
logical associations between proximity to coal ash 



Environ Geochem Health           (2026) 48:85 	 Page 3 of 16     85 

Vol.: (0123456789)

impoundments and cancer incidence across the U.S., 
using national datasets and advanced geospatial sta-
tistical methods.

Data and methods

Data and variables

Data on the locations (latitude and longitude) of 
coal-fired power plants and attributes of their affili-
ated coal ash storage facilities across the U.S. were 
acquired from Earthjustice (https://​earth​justi​ce.​org/​
featu​re/​coal-​ash-​conta​minat​ed-​sites-​map). This data-
set compiles information reported by coal-fired power 
plants in compliance with the 2015 Coal Combustion 
Residuals Rule—the first federal regulation aimed at 
controlling coal ash pollution.

Airborne cancer risk scores and exposure concen-
trations for three toxic heavy metals: arsenic, cad-
mium, and lead were downloaded from the EPA’s 
2014 National Air Toxics Assessment (NATA, 
https://​www.​epa.​gov/​natio​nal-​air-​toxics-​asses​sment/​
2014-​nata-​asses​sment-​resul​ts) (U.S. Environmen-
tal Protection Agency, 2018), considering the long 
latency period between exposure to environmen-
tal risk factors and cancer diagnosis (Carpenter & 
Bushkin-Bedient, 2013; Steinmaus et al., 2014; Trie-
big, 2010). The EPA’s 2014 NATA estimated chemi-
cal exposure concentrations by integrating modeled 
ambient concentrations with census data and human 
activity patterns, providing screening-level estimates 
for inhalation exposure based on assumptions about 
emissions, dispersion, and population behavior (U.S. 
Environmental Protection Agency, 2018).

Cancer risk scores are expressed as probabilities, 
specifically, the estimated number of additional can-
cer cases per million people exposed to a particu-
lar toxic air pollutant over a lifetime. For example, 
a cancer risk score of 1 in a million suggests that 
one additional case is expected per million peo-
ple exposed. Unlike previous studies that relied on 
ambient concentrations (Hart et al., 2018), we used 
exposure concentrations, which could offer a more 
accurate estimate of the actual pollutant dose indi-
viduals receive—an essential factor in evaluating 
health risks using exposure concentrations might 
be more scientifically sound for cancer risk stud-
ies (Robinson et  al., 2024). Nevertheless, ambient 

concentration remains valuable for broader public 
health assessments and for identifying areas with 
high pollution levels that warrant further investiga-
tion (Kramer et  al., 2025; Tomlinson et  al., 2024; 
U.S. Environmental Protection Agency, 2024).

County-level cancer incidence data were obtained 
from the National Cancer Institute (NCI)’s Sur-
veillance, Epidemiology, and End Results (SEER) 
cancer registry program (https://​state​cance​rprof​
iles.​cancer.​gov/​map/​map.​noima​ge.​php). The age-
adjusted cancer incidence rates by county, based 
on the most recent 5-year average (2017–2021) 
include all cancer types, across all racial and eth-
nic groups, both sexes, and all age categories. We 
limited our analysis to the 48 contiguous states, as 
no CCR facilities are in Alaska and Hawaii. Coun-
ties in Indiana and Kansas were also excluded due 
to unavailable data. Additionally, 12 which had low 
case counts (i.e., less than 16 records), were sup-
pressed in accordance with standard data privacy 
practices established by the U.S. Centers for Dis-
ease Control and Prevention—CDC). As a result, 
our analysis was restricted to 2901 counties across 
the contiguous U.S. Using age-adjusted cancer rates 
allows for more accurate geographic comparisons 
than crude incidence rates, as it accounts  for dif-
ferences in population age structures. This adjust-
ment ensures that observed variations   in cancer 
rates are not simply  attributable to  disparities  in 
age distribution across populations (Ige et al., 2024; 
Jagai et  al., 2017). In addition to total cancer inci-
dence, we also obtained data specifically for lung 
cancer—one of the leading causes of cancer-related 
deaths—because direct exposure of airborne pollut-
ants significantly increases the likelihood of cellu-
lar damage in lung tissues compared to other organs 
(Collarile et al., 2017; Poulson et al., 2024). To be 
consistent with the overall cancer analysis, the lung 
cancer dataset includes all racial and ethnic groups, 
both sexes, and all age categories.

Additionally, data on health risk behaviors meas-
ures (i.e., smoking, binge drinking, obesity, physical 
inactivity, poverty, and lack of health insurance) were 
obtained from the CDC Population Level Analy-
sis and Community Estimates (PLACES) database, 
which uses the national Behavioral Risk Factor Sur-
veillance System (BRFSS) data and a small-area 
estimation method to generate data for small area 
units such as counties, census tracts and ZIP Code 

https://earthjustice.org/feature/coal-ash-contaminated-sites-map
https://earthjustice.org/feature/coal-ash-contaminated-sites-map
https://www.epa.gov/national-air-toxics-assessment/2014-nata-assessment-results
https://www.epa.gov/national-air-toxics-assessment/2014-nata-assessment-results
https://statecancerprofiles.cancer.gov/map/map.noimage.php
https://statecancerprofiles.cancer.gov/map/map.noimage.php
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Tabulation Areas (Kong & Zhang, 2020; Wang et al., 
2017).

Spatial statistical analyses

We calculated straight-line distance from each county 
to the nearest power plant using ArcGIS Pro to assess 
proximity to coal ash storage facilities, which are 
typically located on power plant properties for logis-
tic, economic, and regulatory reasons (EarthJustice, 
2024b). To measure the straight-line distance from a 
point (e.g., power plant) to a polygon (e.g., county), 
one must first identify the closest edge (or line seg-
ment) of the polygon to the point. Then, the short-
est distance from the point to that specific edge can 
be calculated. If a power plant is located within a 
county, the distance is zero; if a power plant is outside 
a county, the distance is positive. To investigate the 
association between proximity to coal ash sites and 
county level cancer incidence rates, three cumulative 
spatial statistical analyses including contingency table 
analysis, bivariate spatial association, and multiple 
linear regression were performed with statistical sig-
nificance evaluated at three levels: p < 0.05, p < 0.01, 
and p < 0.001 (2-tailed).

First, a contingency table analysis using the chi-
square test was conducted to examine if there is a 
significant relationship between proximity to coal 
ash impoundments and cancer incidence levels, with 
both variables treated categorically. Chi-square tests 
are widely used to evaluate both differences and 
associations in categorical data (Bewick et al., 2004; 
Teye et  al., 2021). To categorize cancer incidence 
for each county, we used the national median cancer 
incidence rate (459.9 per 100,000 population dur-
ing 2017–2021) as the threshold. Counties with rates 
below the median were classified as having “Low” 
cancer incidence, while those at or above the median 
were classified as “High.” For proximity, counties 
were divided into two groups: “Proximity” and “Non-
proximity.” The proximity group included counties 
with coal ash ponds located within a specified dis-
tance threshold (equal or less than threshold), while 
the non-proximity group included counties with no 
coal ash ponds or those located beyond the threshold. 
A series of distance thresholds (5 km, 10 km, 15 km, 
and 20  km) were applied to classify all 2684 coun-
ties into proximity and non-proximity groups based 
on their distance from coal ash impoundments. This 

approach allows us to evaluate the sensitivity of the 
contingency table analysis to varying proximity defi-
nitions, thereby enhancing the robustness and reliabil-
ity of our findings (Bauleo et al., 2019; Casey et al., 
2018; Zhang & Zierold, 2024).

Second, a bivariate spatial association analy-
sis using Lee’s L statistic was performed to explore 
how the relationship between cancer incidence and 
distance to coal ash impoundments varies spatially 
across the U.S. . While the contingency table analysis 
provides a global assessment of the statistical associa-
tion between cancer incidence and county-level prox-
imity to coal ash sites, it does not provide information 
about the direction or magnitude of the relationship. 
Lee’s L—implemented in ArcGIS Pro—offers a more 
in-depth analysis of spatially varying patterns in this 
relationship. Moreover, unlike the global Pearson cor-
relation coefficient, Lee’s L enables the assessment of 
spatial associations between two continuous variables 
by providing both global and local Lee’s L statis-
tics (Lee, 2001; Tao & Thill, 2025). The application 
of spatial statistical methods is grounded in the first 
law of geography or principle of spatial autocorrela-
tion, which is inherent in geographically referenced 
data such as county-level cancer incidence rates and 
proximity to power plants in this study (Gesler, 1986; 
Griffith, 2018; Tobler, 1970). In the context of this 
study, Lee’s L statistic was instrumental in identifying 
regions where cancer incidence rates were spatially 
associated with the distance to coal ash impound-
ments. Specifically, it helped detect areas where high 
or low cancer rates corresponded with either close or 
distant proximity to CCR sites. This spatial statistical 
measure provided valuable insight into localized pat-
terns of environmental exposure and health outcomes, 
revealing clusters of elevated or reduced cancer risk.

Finally, we employed multiple linear regression 
(both ordinary least squares or OLS and spatial lag 
models) to examine the relationship between cancer 
incidence rates and proximity to coal ash impound-
ments, while controlling for potential confounding 
factors. Spatial lag regression works by including 
spatially lagged values of cancer incidence rates from 
neighboring counties to address spatial autocorrela-
tion (Anselin & Rey, 1991; Kuo et al., 2019), as adja-
cent areas tend to exhibit similar cancer incidence lev-
els, thereby violating the basic assumption of linear 
regression. Age-adjusted incidence rates for all cancer 
types and for lung cancer specifically were used as the 
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dependent variables in separate models. Independent 
variables included straight-line distance to the near-
est coal ash storage site, average PM2.5 concentra-
tion, cancer risk scores, and exposure concentrations 
for three heavy metals. Distance was used as a proxy 
for proximity to coal ash storage facilities associated 
with coal-fired power plants. Incorporating NATA 
assessments for cancer risk scores and exposure 
concentrations of arsenic, cadmium, and lead helps 
account for toxic airborne emissions from coal-fired 
power plants and other industrial facilities in regres-
sion models. The NATA database models emissions 
and dispersion of hazardous air pollutants from coal-
fired power plants; however, it does not account for 
emissions from coal-ash landfills and impoundments. 
Additionally, covariates such as poverty, lack of 
health insurance, lack of leisure time physical activ-
ity (physical inactivity), and binge drinking among 
adults (defined as % adults who reported having ≥ 5 
drinks (men) or ≥ 4 drinks (women) on ≥ 1 occasion 
during the previous 30 days) (Bagnardi et  al., 2015; 
White et  al., 2017) were considered. Other covari-
ates included smoking (defined as adults who have 
smoked ≥ 100 cigarettes in their lifetime and currently 
smoke every day or on some days) (Mokdad et  al., 
2017; Myers et  al., 2020) and obesity prevalence 
(%) (Moss et al., 2025; Pati et al., 2023). Numerous 

studies have utilized county-level data and advanced 
geospatial statistical methods to examine associations 
between environmental risk factors and population-
based health outcomes (Chang et al., 2017; Martinez-
Morata et al., 2022; Moore et al., 2018).

Results

Results from the contingency table analysis assessed  
the relationship between proximity to coal ash 
impoundments and cancer risk levels (Table  1). For 
example, of the 526 counties having a coal-fired 
power plant or within a 10  km radius, 212 coun-
ties had lower cancer levels, while 314 counties had 
higher cancer levels than the national median . In con-
trast, of the 2374 counties beyond the 10 km thresh-
old, 1227 counties had lower cancer levels, while 
1147 counties had higher cancer incidence levels. 
This distribution produced a statistically significant 
chi-square value of 22.310 (p < 0.001), indicating 
that counties closer to coal ash storage facilities were 
more likely to exhibit cancer incidence rates above 
the national median. The analysis using alternative 
distance thresholds (5, 15, and 20 km) yielded simi-
lar outcomes, indicating that counties near coal ash 
storage sites were more likely to have higher cancer 

Table 1   Contingency 
table: difference in cancer 
incidence levels between 
counties near coal-fired 
power plants and those 
farther away cancer 
incidence levels*

* Each cell of the table 
contains the observed 
frequency count, followed 
by the expected frequency 
count, in parentheses

Distance 
thresholds

County groups Low cancer 
level < national 
median

High cancer 
level ≥ national 
median

Total

5 km Proximity (≤ 5 km) 165 (196.0) 230 (199.0) 395
Non-proximity (> 5 km) 1274 (1243.0) 1231 (1262.0) 2505
Total 1439 1461 2900
Chi-square = 11.268, p < 0.001

10 km Proximity (≤ 5 km) 212 (261.0) 314 (265.0) 526
Non-proximity (< 5 km) 1227 (1178.0) 1147 (1196.0) 2374
TOTAL 1439 1461 2900
Chi-square = 22.310, p < 0.001

15 km Proximity (≤ 5 km) 254 (312.1) 375 (316.9) 629
Non-proximity (> 5 km) 1185 (1126.9) 1086 (1144.1) 2271
TOTAL 1439 1461 2900
Chi-square = 27.427, p < 0.001

20 km Proximity (≤ 5 km) 314 (379.6) 451 (385.4) 765
Non-proximity (> 5 km) 1125 (1059.4) 1010 (1075.6) 2135
TOTAL 1439 1461 2900
Chi-square = 30.564 (p < 0.001)
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rates than those farther away or the potential harmful 
effects of exposure to coal ash emitted from coal ash 
impoundments.

A visualization of the geographic distribution of 
cancer incidence and coal ash impoundments sug-
gests that most coal ash impoundments are concen-
trated in the eastern United States—particularly in 
the Midwest, Ohio Valley, and the South, which have 
historically been major coal producers, leading to the 
establishment of nearby power plants (Fig. 1). Nation-
wide, there are 741 coal ash storage impoundments 
associated with 302 coal-fired power plants, with 
Indiana, Texas, Illinois, Kentucky, and Missouri rank-
ing as the top five states by number of impoundments. 
Results from the spatial autocorrelation analysis 
using global Moran’s I supported our visualization, 
indicating that both age-adjusted cancer incidence 
rates (Moran’s I = 0.45, p < 0.001) and proximity to 

coal-fired power plants (Moran’s I = 0.91, p < 0.001) 
were spatially clustered.

The results from the more detailed bivariate spa-
tial association analysis provided a clearer and 
more nuanced illustration of the spatial relationship 
between distance to coal ash impoundments and can-
cer incidence (Fig. 2). A global negative correlation 
was observed between cancer incidence and distance 
to coal-fired impoundments (Pearson’s r =  − 0.237, 
p = 0.002; Lee’s L =  − 0.235), indicating that counties 
closer to these sites tend to have higher cancer rates. 
This finding was further supported by 449 counties 
that exhibited statistically significant negative local 
associations between distance to CCR sites and can-
cer incidence. These counties were highlighted in 
dark red and labeled “Near - High” in the legend, 
signifying high cancer rates in areas near coal ash 
impoundments.

Fig. 1   Annual average age-adjusted cancer incidence (2017–2021) for 2684 U.S. counties using data downloaded from the National 
Cancer Institute (NCI)
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The two largest clusters of these counties span 
across Iowa, Illinois, Missouri, Tennessee, Kentucky, 
Ohio, West Virginia, and Pennsylvania. Additional 
smaller clusters were identified in central Louisiana, 
southern Mississippi, northeastern Florida, western 
Georgia, southern North Carolina, upstate New York, 
New Jersey, and central Pennsylvania. Among the 
449 counties, local correlations were significant at the 

99% confidence level in 45 counties, at the 95% level 
in 232 counties, and at the 90% level in 172 counties 
(Table 2).

In contrast, 109 counties showed significant posi-
tive local correlations, labeled “Far  - High” and 
mapped in pink. These counties, despite being far 
from coal ash impoundments, exhibited high can-
cer levels, suggesting that other environmental or 

Fig. 2   Map of bivariate spatial association between cancer incidence and proximity to coal ash impoundments across the U.S

Table 2   Number of 
counties by significance of 
bivariate spatial association 
between cancer incidence 
and distance to CCR 
(n = 2900)

Category Count of counties by significant level of bivariate correlation

99% significant 95% significant 90% significant Significant
at all levels

Near—High 45 232 172 449
Far—High 61 34 14 109
Near—Low 112 133 83 328
Far—Low 211 85 35 331
Not significant 1683
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socioeconomic risk factors may be contributing to 
cancer incidence. Additionally, 328 counties near 
CCR sites showed low cancer incidence rates, while 
331 counties located farther away also exhibited low 
cancer rates.

Descriptive statistics for the multiple regression 
models are presented in Table  3. Cancer incidence 
rates varied widely across U.S. counties, ranging from 
a minimum of 182.3 to a maximum of 1248.4 cases 
per 100,000 population, with a mean of 459.2 and a 
standard deviation of 59.1. The minimum distance to 
coal ash impoundments was 0 km, indicating counties 
with CCR sites located within their boundaries, while 
the maximum distance was 581.7 km, with an average 
of 73.1 km. Airborne cancer risk scores also showed 
substantial variation: the county with the highest 
score (465.1) had a value nearly 50 times greater than 
that of the county with the lowest score (8.8).

As expected, county-level age-adjusted incidence 
rates for all cancer types were negatively correlated 
with distance to coal ash storage sites and positively 
correlated with airborne cancer risk scores, exposure 
to arsenic, smoking, obesity, physical inactivity, and 
poverty rate, as indicated by the bivariate linear cor-
relation (Pearson’s r) analysis (Table  4). However, 
lack of health insurance showed unexpected negative 
correlation with cancer incidence, while PM2.5, expo-
sure to cadmium and lead, and binge drinking were 
not significantly correlated with cancer incidence.

Results of the multiple regression model for all 
cancer types supported the negative correlation 
between cancer incidence and distance to CCR, indi-
cating a positive association with proximity to CCR 
locations. Positive associations were also observed 
for airborne cancer risk scores, smoking, binge drink-
ing, and physical inactivity. Although not statistically 
significant, PM2.5, exposure to the three heavy met-
als, and obesity exhibited the expected positive coeffi-
cients with cancer incidence. In contrast, poverty and 
lack of health insurance showed unexpected nega-
tive associations with cancer incidence. Overall, the 
model explained 17% of the variance in overall can-
cer incidence, as indicated by the adjusted R-squared 
value. The results of spatial lag model improved the 
explanatory power of the OLS model indicated by a 
larger R-square value (0.296) and the significant spa-
tially lagged incidence rates from nearby counties, 
which represents spatial autocorrelation. Moreover, 
it is noteworthy that distance remained significant in 
the spatial lag model after spatial autocorrelation and 
other confounding factors have been adjusted.

The OLS regression model for lung cancer inci-
dence revealed expected associations with proximity 
to CCR locations, PM2.5 concentrations, exposure to 
arsenic, smoking, binge drinking, and lack of physical 
activity (Table  5). Conversely, airborne cancer risk 
score and lead exposure were not significant. Unex-
pected inverse associations were observed for cad-
mium exposure, obesity, poverty, and lack of health 

Table 3   Descriptive 
statistics of cancer 
incidence, proximity to 
power plants, and covariates 
(n = 2313)

Variables Min Max Mean S.D

Dependent variable
All cancer incidence rates per 100,000 182.3 1248.4 459.2 59.1
Independent variables
Distance to coal ash storage facility (km) 0 581.7 73.1 91.3
PM2.5 (µg/m3) 1.3 39.1 7.7 2.1
Airborne cancer risk score (per million) 8.8 465.1 27.5 13.4
Exposure concentration of arsenic (ng/m3) 0.001 0.9 0.03 0.03
Exposure concentration of cadmium (ng/m3) 0.0005 1.7 0.001 0.04
Exposure concentration of lead (ng/m3) 0.011 3.3 0.2 0.1
Smoking rate among adults (%) 9.1 40.3 21.7 4.1
Binge drinking among adults (%) 9.8 27.2 18.1 3.2
Obesity rate among adults (%) 15.7 50.1 35.2 4.6
Lack of physical activity among adults (%) 10.0 44.9 27.4 5.4
Poverty rate (%) 0 49.4 10.9 5.5
Lack of health insurance (%) 6.3 46.6 16.0 5.5
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Table 4   Results of multiple regression of age-adjusted all cancer incidence rates against proximity to ash storage facilities and other 
environmental risk factors

* Denotes statistically significant at the 0.05 level while **denotes at the 0.01 level and ***denotes at the 0.001 level. Multicollinear-
ity among the independent variables was not a concern, as all variance inflation factor (VIF) values were below 7.5

Variables Pearson’s r with all 
cancer rates

OLS model for all cancer rates 
(n = 2313)

Spatial lag model

Coefficient Std. error

Intercept n.a 268.668*** 18.216 147.044***
Distance to coal ash storage sites (km)  − 0.241***  − 0.086*** 0.014  − 0.053***
Airborne cancer risk scores (per million) 0.120*** 0.412*** 0.100 0.247**
PM2.5 (µg/m3)  − 0.002 0.768 0.614 0.638
Exposure concentration of arsenic (ng/m3) 0.053* 45.485 39.665 46.391
Exposure concentration of cadmium (ng/m3) 0.019 23.782 30.593 23.505
Exposure concentration of lead (ng/m3) 0.030 10.726 8.050 9.310
Smoking rate among adults (%) 0.266*** 1.642** 0.531 1.224*
Binge drinking among adults (%)  − 0.034 3.172*** 0.540 2.372***
Obesity rate among adults (%) 0.243*** 0.491 0.404 0.593
Physical inactivity among adults (%) 0.257*** 3.827*** 0.545 2.209***
Poverty rate (%) 0.083***  − 1.223*** 0.339  − 0.730*
Lack of health insurance (%)  − 0.072***  − 1.598*** 0.277  − 0.559*
Spatially lagged cancer rates (per 100,000) n.a. n.a. n.a. 0.366***
Adjusted R-Squared 0.170 0.296
Global Moran’s I among residuals 0.336 (p < 0.001)

Table 5   Results of multiple regression of age-adjusted lung cancer incidence rates against proximity to ash storage facilities and 
other environmental risk factors

Variables Pearson r with lung 
cancer rates

OLS model for lung cancer rates 
(n = 2163)

Spatial lag model

Coefficient Std. error

Intercept n.a  − 9.286* 4.321  − 22.196***
Distance to coal ash storage facility (km)  − 0.307***  − 0.026*** 0.003  − 0.012***
Airborne cancer risk score (per million) 0.119*** 0.014 0.023  − 0.010
PM2.5 (µg/m3)  − 0.026 0.502** 0.156 0.364**
Exposure concentration of arsenic (ng/m3) 0.011 23.370* 9.088 19.933*
Exposure concentration of cadmium (ng/m3)  − 0.051*  − 8.824 6.961  − 1.846
Exposure concentration of lead (ng/m3)  − 0.045* 0.669 1.845 1.119
Smoking rate among adults (%) 0.665** 2.304*** 0.127 1.710***
Binge drinking among adults (%)  − 0.267*** 0.299* 0.128 0.437***
Obesity rate among adults (%) 0.467***  − 0.208* 0.094  − 0.065
Physical inactivity among adults (%) 0.590*** 1.263*** 0.128 0.691***
Poverty rate (%) 0.346***  − 0.546*** 0.083  − 0.324***
Lack of health insurance (%) 0.062**  − 0.414*** 0.066  − 0.052
Spatially lagged lung cancer incidence n.a. n.a. n.a. 0.416***
Adjusted R-squared 0.514 0.611
Global Moran’s I among OLS residuals 0.339 (p < 0.001)
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insurance. Overall, the lung cancer model explained 
more than 51% of the variance in incidence rates 
across U.S. counties. The inclusion of spatially lagged 
values of lung cancer incidence from nearby counties 
improved model performance, while the negative cor-
relation between cancer incidence and distance, as 
well as the positive correlations with smoking, drink-
ing and physical inactivity, remained significant.

Discussions

This national study of the spatial associations 
between cancer incidence rates and proximity to 
coal-fired power plants and their affiliated coal ash 
impoundments has the following scientific merits: 
First, conducting a geographic study using national 
datasets (i.e., NCI’s cancer registries, EPA, and CDC 
PLACES) allows us to detect broad spatial patterns, 
especially the disparities in cancer rates between 
counties in proximity to coal-ash impoundments and 
counties that are farther away. Second, the research 
design of incorporating three complementary spa-
tial analysis approaches—contingency table analysis, 
bivariate spatial association, and multiple regres-
sion—provides a rigorous framework for hypoth-
esis testing. Third, the ecological approach facilitates 
hypotheses generation (e.g., whether cancer incidence 
is elevated near clusters of impoundments), which can 
justify more resource-intensive individual-level stud-
ies in the future. Moreover, because both exposure 
and health outcomes are measured at the population 
level, findings from this study directly inform pub-
lic health burden and policy decisions (e.g., land use 
zoning, remediation priorities), issues that regulators 
typically address first. Importantly, given the toxic 
nature of coal ash, its widespread distribution across 
thousands of communities (Longest et al., 2022), and 
the absence of strict EPA regulation, national research 
on this topic provides critical evidence to support 
stronger regulatory measures and remediation efforts 
aimed at preventing environmental contamination and 
protecting the health of nearby residents.

The results of contingency table analysis indicate 
that counties that contain or near coal ash impound-
ments were significantly more likely to exhibit higher 
cancer incidence levels than counties farther away, 
regardless of the distance thresholds applied. Bivari-
ate spatial associations further revealed clusters of 

counties with significant positive local correlations 
between proximity to coal ash sites and cancer inci-
dence. These findings align with previous studies that 
have documented the adverse impacts of proximity 
to coal-fired power plants and cancer clusters across 
the U.S. (Goodman et  al., 2012; Guo et  al., 2024; 
Luo et al., 2025; Moore et al., 2017; Reynolds et al., 
1996). For example, a study in the Appalachian Coal-
Mining Region identified three clusters of counties 
with higher-than-expected cancer rates. One of these 
clusters included several counties in the Louisville, 
Kentucky, metropolitan area (Christian et al., 2011).

While the spatial regression model explained less 
than 30% of the variance in total cancer incidence, it 
explained over 61% of variance in lung cancer inci-
dence. The substantial increase in explanatory power 
underscores the value of focusing on specific cancer 
types using disaggregated data in future research. In 
both the total cancer and lung cancer models, dis-
tance to coal ash impoundments showed significant 
and negative associations, even after adjusting for 
other confounding factors and spatial autocorrelation. 
These findings support our hypothesis that proxim-
ity to coal ash impoundments is linked to increased 
cancer risks. Furthermore, cancer incidence for both 
total cancer and lung cancer were significantly associ-
ated with smoking, drinking, and physical inactivity, 
which corroborate prior research on these relation-
ships (Guo et al., 2024; Moss et al., 2025). The lung 
cancer model demonstrated significant positive asso-
ciations between cancer incidence and PM2.5, arsenic 
concentration, as well as airborne cancer risk scores, 
highlighting specific environmental risk factors for 
the disease.

Several potential explanations may account for 
the weak associations observed between heavy 
metal exposure and cancer incidence. First, the data 
on metal exposures were assessed for a single year, 
rather than using long-term cumulative measures. 
Cancer typically develops because of chronic expo-
sure to risk factors over extended periods. Second, 
EPA’s NATA data model only airborne exposure, 
overlooking other critical pathways such as contami-
nated drinking water and soil. Industry data indicates 
that approximately 90% of coal ash impoundments 
contribute to groundwater contamination by nearly 
two dozen heavy metals, often exceeding health 
thresholds set by the EPA (Sierra Club, 2014). To 
fully reveal the health impacts of coal ash exposure, 
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future research should incorporate comprehensive 
cumulative exposure assessments that capture long-
term contamination across multiple environmental 
pathways including air, water, and soil (Bailey et al., 
2025). Such integrative approaches are critical for 
evaluating aggregate risks from coal ash constituents, 
particularly toxic heavy metals.

The findings in this study were inconsistent with 
the existing studies that suggest linkages between 
cancer incidence and poverty and lack of health 
insurance (Boscoe et  al., 2014; Hall et  al., 2022). 
Although it may seem counterintuitive, U.S. counties 
with higher poverty rates and lower health insurance 
coverage often report lower cancer incidence rates. 
This pattern is largely attributable to underdiagnosis 
resulting from limited access to healthcare and pre-
ventive services such as screening (Marlow et  al., 
2009). Certain cancers—like cervical, liver, and 
Kaposi sarcoma—are more prevalent in low-income 
areas due to factors such as infectious agents, envi-
ronmental exposures, and inadequate vaccination or 
screening (Amboree et al., 2024). In contrast, cancers 
such as melanoma, thyroid, and testicular are more 
commonly diagnosed in wealthier populations, likely 
reflecting lifestyle differences and greater access to 
early detection (Wagle et al., 2025).

This study has several additional limitations. First, 
the results may be affected by under-reporting of coal 
ash storage sites, as data are based on disclosures 
required under the 2015 Coal Ash Rule.

Following years of legal battles and grassroots 
pressure, the U.S. EPA implemented a new regulation 
in 2024 that expanded federal oversight and cleanup 
mandates to include hundreds of older coal ash land-
fills and ponds previously exempt, many of which had 
been contaminating groundwater with toxic waste. 
This new rule closes loopholes in the 2015 Coal Ash 
Rule, which had left about half of all coal ash unregu-
lated and allowed coal-fired power plants nationwide 
to sidestep cleanup responsibilities. EarthJustice has 
identified as many as 1271 “legacy coal ash sites scat-
tered in 30 states which were not regulated by the 
2015 Coal Ash Rule (EarthJustice, 2024a). Legacy 
coal ash sites refer to CCR impoundments—such 
as ponds and landfills—located at power plants that 
ceased operation before October 19, 2015. Moreo-
ver, residents and communities experiencing multiple 
types of exposure may face heightened risks com-
pared to those exposed only to coal-fired power plants 

and coal ash storage facilities. Explicitly incorporat-
ing these potential confounders and effect modifiers 
will enhance the rigor and validity of the study.

Second, using distance as a proxy for proximity 
to coal ash impoundments is limited by the arbitrary 
nature of distance thresholds used to define “proxim-
ity” and the challenge of determining a single “safe” 
distance. Factors such as meteorological and hydro-
logical conditions (e.g., wind direction and speed, 
precipitation, and soil permeability) and plant-spe-
cific characteristics, including emissions controls and 
the lining or capping status of coal ash storage facili-
ties, can significantly influence exposure risk. For 
example, Müller et al. (2022) indicates a carcinogenic 
risk associated with arsenic exposure extending up to 
nearly 10 km from the coal-fired power plant, while 
Yang et  al. (2017) suggested that the health risk of 
power-fired power plants could reach as far as 20–30 
miles away. While coal-fired power plants contribute 
to air pollution linked to increased lung cancer risk, a 
study in Kansas found that proximity alone was not a 
significant predictor of age-adjusted lung cancer inci-
dence rates when controlling other factors like smok-
ing, age, poverty, and wind patterns (Ige et al., 2024).

Third, reliance on aggregated county-level cancer 
incidence data obscures within-county variability 
and limits access to detailed covariates such as race, 
age, gender, lifestyle factors, and other socioeco-
nomic risk determinants, making it difficult to fully 
control for confounding. Furthermore, cancer reg-
istries may experience delays or underreporting in 
certain counties. Future research should incorporate 
individual-level data through community-based stud-
ies to obtain more precise measures of cancer diag-
nosis and environmental exposures. In particular, 
future studies should examine racial/ethnic dispari-
ties in cancer incidence in relation to exposure to coal 
ash, as the environmental injustice literature has long 
highlighted that communities of color and economi-
cally disadvantaged populations face disproportionate 
exposure to environmental pollutants, exacerbating 
racial health disparities including cancer (Buzzelli & 
Jerrett, 2003; Chakraborty & Maantay, 2011; Daouda 
et al., 2021; Moore et al., 2018). For example, analy-
ses using disaggregated cancer incidence rates have 
indicated elevated cancer rates among Black popula-
tions, who predominantly reside in segregated neigh-
borhoods (Poulson et al., 2024).
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Despite its limitations, this study reinforces exist-
ing evidence of elevated cancer risks among com-
munities located near coal-fired power plants and 
associated coal ash impoundments, likely due to 
chronic exposure to coal ash contaminants containing 
carcinogenic heavy metals. To address these weak-
nesses, future research should employ more accurate 
and representative measures of proximity and expo-
sure to better assess the adverse health impacts of 
coal ash. Beyond heavy metals, future studies should 
also investigate the radiological risks of coal ash, 
as recent research has raised concerns about health 
hazards associated with its reuse in products such as 
cement, concrete, and landscaping material (Turhan 
& Jamasali, 2024). Likewise, emerging proposals to 
extract rare earth elements from coal ash may intro-
duce additional environmental and health risks if not 
carefully managed (Briffa et  al., 2020; Slavković-
Beškoski et al., 2024).

Conclusion

Across the United States, many communities face 
environmental health challenges due to their prox-
imity to coal-fired power plants and associated coal 
ash disposal sites, which release toxic substances 
such as arsenic, mercury, and lead into the environ-
ment. Limited national-level research has investigated 
if residential proximity to coal ash impoundments 
was related to elevated risks of cancer. Building on 
the existing literature, this study examined the link-
ages between cancer incidence and proximity to coal 
ash storage facilities as well as exposure to airborne 
heavy metals while accounting for other socioeco-
nomic, environmental, and behavioral risk factors. 
The findings of this empirical analysis shed new light 
on the link between exposure to coal ash and cancer 
risk, offering valuable insights that can inform public 
health policies and help address the disproportionate 
challenges faced by communities near coal ash stor-
age sites, which are more vulnerable than those far-
ther away.

Given the toxic nature of coal ash, the U.S. EPA 
only recently mandated coal-fired power plants to 
properly manage and dispose of it, including the 
safe closure of coal ash impoundments in favor of 
cleaner and more sustainable approaches (Kumar 
& Reddy, 2024). Although coal-fired power plants 

have been gradually phased out in favor of cleaner 
energy sources, thousands of coal ash storage facili-
ties including both active and legacy sites continue 
to pose long-term environmental and health risks to 
nearby communities due to inadequate treatment and 
regulatory oversight. Therefore, there is an urgent 
need for additional research and stronger policy inter-
ventions to mitigate the environmental health risks 
associated with coal ash, given the enduring legacy of 
coal-fired power generation.
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