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Abstract Across the United States (U.S.), many
communities experience disproportionate expo-
sure to environmental health hazards due to their
proximity to coal-fired power plants and associated
coal ash disposal sites. These facilities release toxic
heavy metals such as arsenic, mercury, and lead into
the surrounding environment, posing serious public
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health risks. Although prior research has documented
adverse health effects of coal-fired power plants, few
studies have specifically examined the relationship
between cancer incidence and proximity to coal ash
impoundments, as well as exposure to elevated con-
centrations of toxic constituents in coal ash. Using
complementary contingency table analyses, bivariate
spatial association techniques, and spatial regression
methods, this study finds consistent evidence that
counties containing or adjacent to coal ash impound-
ments exhibit significantly higher cancer incidence
rates compared to more distant counties, even after
adjusting for potential confounders. Incidence rates
for both total cancer and lung cancer were signifi-
cantly associated with smoking, drinking, and physi-
cal inactivity, corroborating prior research on these
behavioral risk factors. The lung cancer model further
revealed significant positive associations between
cancer incidence and PM,.5, arsenic concentrations,
and airborne cancer risk scores, highlighting spe-
cific environmental risk factors for the disease. These
findings strengthen the evidence linking coal ash
exposure to adverse health outcomes and underscore
the urgent need for robust enforcement and compli-
ance measures to protect communities from coal ash
contamination.

Keywords Coal-fired power plants - Coal ash

impoundments - Proximity - Heavy metals - Cancer
incidence - United States
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Introduction

Coal ash, also known as Coal Combustion Residuals
(CCR), is primarily a byproduct of burning coal for
electricity generation (Deonarine et al., 2023). The
U.S. Environmental Protection Agency (EPA) esti-
mates that approximately 70 million tons of coal ash
are produced annually in the United States (U.S.), the
second largest types of industrial waste after mining
operations (American Coal Ash Association, 2023;
U.S. Environmental Protection Agency, 2025a). Coal
ash typically contains higher concentrations of heavy
metals than the original coal, as the combustion pro-
cess enriches these toxic elements in the residual ash
(Altikulag et al., 2022; Deonarine et al., 2015; Zierold
et al., 2021). Although the U.S. EPA has not classi-
fied coal ash as hazardous, chronic exposure to these
substances has been linked to increased rates of lung
cancer, cardiovascular disease, birth defects, and
other serious health outcomes in nearby populations
(Amster, 2021; Daouda et al., 2021; Gottlieb et al.,
2010; Ruhl et al., 2009; Tomlinson et al., 2024).

Coal ash is commonly disposed of in open-air stor-
age impoundments or landfills located near coal-fired
power plants because on-site disposal is less costly
and subject to fewer regulatory constraints (Sears
& Zierold, 2017; U.S. Environmental Protection
Agency, 2025b). There are approximately 1400 coal
ash storage sites across 45 U.S. states, collectively
holding over 3 billion tons of coal ash (Sierra Club,
2014). Many of these facilities lack critical safety
infrastructure—such as proper landfill capping and
impoundment lining—Ileaving surrounding communi-
ties exposed to significant environmental and health
risks. Coal ash can contaminate the environment
through airborne particle dispersal or by leaching into
nearby soil and water sources. In addition to chronic
exposure risks, catastrophic events such as the 2008
Kingston Fossil Plant spill and the 2014 Dan River
breach have demonstrated the potential for large-scale
environmental and public health disasters (Gaffney,
2018).

Existing research indicates that communities liv-
ing near coal-fired power plants face elevated cancer
risks primarily due to long-term exposure to heavy
metals (e.g., arsenic, cadmium, lead, etc.) in coal ash,
many of which are known carcinogens that contrib-
ute to tumor development and progression (Khlifi &
Hamza-Chaffai, 2010; Kravchenko & Lyerly, 2018;
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Kumari et al., 2023; Whiteside & Herndon, 2018).
The International Agency for Research on Cancer
(IARC) identifies arsenic and cadmium compounds
as Group 1 carcinogens, indicating they are proven to
cause cancer in humans (Waalkes, 2019). Exposure to
these substances is linked to a higher risk of several
cancers, with lung cancer being particularly promi-
nent. Lead is classified as a probable human carcino-
gen and is linked to cancers of the kidney, brain, and
lung (Balali-Mood et al.,, 2021). According to the
EPA, individuals living near certain unlined coal ash
ponds and relying on groundwater for drinking face a
1 in 50 risk of developing cancer due to arsenic con-
tamination—an exposure level 2000 times higher than
the EPA’s acceptable cancer risk threshold and even
greater than the risk associated with smoking a pack
of cigarettes daily (U.S. Environmental Protection
Agency, 2010b). A later study examining the spatial
disparities in residence at the time of cancer diagnosis
in relation to coal-fired power plants in South Korea
found significant higher levels of esophageal, stom-
ach, liver, and lung cancer incidence among females
residing near power plants (Han et al., 2024). Addi-
tionally, particulate matter released from coal-fired
power plants or contained in coal ash is another major
carcinogenic factor (Munawer, 2018). The fine parti-
cles in coal ash can be inhaled deep into the lungs,
where they can cause inflammation, oxidative stress,
and tissue damage, potentially leading to the develop-
ment of lung cancer over time (Kentros et al., 2024;
Lockwood & Evans, 2014).

While previous studies have explored the associa-
tions between coal-fired power plants and cancer risk
(Benedetti et al., 2001; Collarile et al., 2017; Han
et al., 2024; Ige et al., 2024), relatively few have spe-
cifically examined the spatial relationship between
cancer incidence and proximity to coal-ash storage
facilities (Kravchenko & Lyerly, 2018), as well as its
connection with heavy metal exposure (Hagemeyer
et al., 2019; Zhang & Zierold, 2024). More impor-
tantly, government regulation of coal ash and public
awareness of the health risks posed by coal ash in the
U.S. remains limited (U.S. Environmental Protec-
tion Agency, 2010a). Many residents living near coal
ash disposal sites are unaware that the ash contains
hazardous contaminants or that exposure can occur
via air, water, and soil (Gaffney, 2023). This study
seeks to address these gaps by analyzing the eco-
logical associations between proximity to coal ash
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impoundments and cancer incidence across the U.S.,
using national datasets and advanced geospatial sta-
tistical methods.

Data and methods
Data and variables

Data on the locations (latitude and longitude) of
coal-fired power plants and attributes of their affili-
ated coal ash storage facilities across the U.S. were
acquired from Earthjustice (https://earthjustice.org/
feature/coal-ash-contaminated-sites-map). This data-
set compiles information reported by coal-fired power
plants in compliance with the 2015 Coal Combustion
Residuals Rule—the first federal regulation aimed at
controlling coal ash pollution.

Airborne cancer risk scores and exposure concen-
trations for three toxic heavy metals: arsenic, cad-
mium, and lead were downloaded from the EPA’s
2014 National Air Toxics Assessment (NATA,
https://www.epa.gov/national-air-toxics-assessment/
2014-nata-assessment-results) (U.S. Environmen-
tal Protection Agency, 2018), considering the long
latency period between exposure to environmen-
tal risk factors and cancer diagnosis (Carpenter &
Bushkin-Bedient, 2013; Steinmaus et al., 2014; Trie-
big, 2010). The EPA’s 2014 NATA estimated chemi-
cal exposure concentrations by integrating modeled
ambient concentrations with census data and human
activity patterns, providing screening-level estimates
for inhalation exposure based on assumptions about
emissions, dispersion, and population behavior (U.S.
Environmental Protection Agency, 2018).

Cancer risk scores are expressed as probabilities,
specifically, the estimated number of additional can-
cer cases per million people exposed to a particu-
lar toxic air pollutant over a lifetime. For example,
a cancer risk score of 1 in a million suggests that
one additional case is expected per million peo-
ple exposed. Unlike previous studies that relied on
ambient concentrations (Hart et al., 2018), we used
exposure concentrations, which could offer a more
accurate estimate of the actual pollutant dose indi-
viduals receive—an essential factor in evaluating
health risks using exposure concentrations might
be more scientifically sound for cancer risk stud-
ies (Robinson et al., 2024). Nevertheless, ambient

concentration remains valuable for broader public
health assessments and for identifying areas with
high pollution levels that warrant further investiga-
tion (Kramer et al., 2025; Tomlinson et al., 2024,
U.S. Environmental Protection Agency, 2024).

County-level cancer incidence data were obtained
from the National Cancer Institute (NCI)’s Sur-
veillance, Epidemiology, and End Results (SEER)
cancer registry program (https://statecancerprof
iles.cancer.gov/map/map.noimage.php). The age-
adjusted cancer incidence rates by county, based
on the most recent 5-year average (2017-2021)
include all cancer types, across all racial and eth-
nic groups, both sexes, and all age categories. We
limited our analysis to the 48 contiguous states, as
no CCR facilities are in Alaska and Hawaii. Coun-
ties in Indiana and Kansas were also excluded due
to unavailable data. Additionally, 12 which had low
case counts (i.e., less than 16 records), were sup-
pressed in accordance with standard data privacy
practices established by the U.S. Centers for Dis-
ease Control and Prevention—CDC). As a result,
our analysis was restricted to 2901 counties across
the contiguous U.S. Using age-adjusted cancer rates
allows for more accurate geographic comparisons
than crude incidence rates, as it accounts for dif-
ferences in population age structures. This adjust-
ment ensures that observed variations in cancer
rates are not simply attributable to disparities in
age distribution across populations (Ige et al., 2024;
Jagai et al., 2017). In addition to total cancer inci-
dence, we also obtained data specifically for lung
cancer—one of the leading causes of cancer-related
deaths—because direct exposure of airborne pollut-
ants significantly increases the likelihood of cellu-
lar damage in lung tissues compared to other organs
(Collarile et al., 2017; Poulson et al., 2024). To be
consistent with the overall cancer analysis, the lung
cancer dataset includes all racial and ethnic groups,
both sexes, and all age categories.

Additionally, data on health risk behaviors meas-
ures (i.e., smoking, binge drinking, obesity, physical
inactivity, poverty, and lack of health insurance) were
obtained from the CDC Population Level Analy-
sis and Community Estimates (PLACES) database,
which uses the national Behavioral Risk Factor Sur-
veillance System (BRFSS) data and a small-area
estimation method to generate data for small area
units such as counties, census tracts and ZIP Code
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Tabulation Areas (Kong & Zhang, 2020; Wang et al.,
2017).

Spatial statistical analyses

We calculated straight-line distance from each county
to the nearest power plant using ArcGIS Pro to assess
proximity to coal ash storage facilities, which are
typically located on power plant properties for logis-
tic, economic, and regulatory reasons (EarthJustice,
2024b). To measure the straight-line distance from a
point (e.g., power plant) to a polygon (e.g., county),
one must first identify the closest edge (or line seg-
ment) of the polygon to the point. Then, the short-
est distance from the point to that specific edge can
be calculated. If a power plant is located within a
county, the distance is zero; if a power plant is outside
a county, the distance is positive. To investigate the
association between proximity to coal ash sites and
county level cancer incidence rates, three cumulative
spatial statistical analyses including contingency table
analysis, bivariate spatial association, and multiple
linear regression were performed with statistical sig-
nificance evaluated at three levels: p<0.05, p<0.01,
and p <0.001 (2-tailed).

First, a contingency table analysis using the chi-
square test was conducted to examine if there is a
significant relationship between proximity to coal
ash impoundments and cancer incidence levels, with
both variables treated categorically. Chi-square tests
are widely used to evaluate both differences and
associations in categorical data (Bewick et al., 2004;
Teye et al., 2021). To categorize cancer incidence
for each county, we used the national median cancer
incidence rate (459.9 per 100,000 population dur-
ing 2017-2021) as the threshold. Counties with rates
below the median were classified as having “Low”
cancer incidence, while those at or above the median
were classified as “High.” For proximity, counties
were divided into two groups: “Proximity” and “Non-
proximity.” The proximity group included counties
with coal ash ponds located within a specified dis-
tance threshold (equal or less than threshold), while
the non-proximity group included counties with no
coal ash ponds or those located beyond the threshold.
A series of distance thresholds (5 km, 10 km, 15 km,
and 20 km) were applied to classify all 2684 coun-
ties into proximity and non-proximity groups based
on their distance from coal ash impoundments. This
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approach allows us to evaluate the sensitivity of the
contingency table analysis to varying proximity defi-
nitions, thereby enhancing the robustness and reliabil-
ity of our findings (Bauleo et al., 2019; Casey et al.,
2018; Zhang & Zierold, 2024).

Second, a bivariate spatial association analy-
sis using Lee’s L statistic was performed to explore
how the relationship between cancer incidence and
distance to coal ash impoundments varies spatially
across the U.S. . While the contingency table analysis
provides a global assessment of the statistical associa-
tion between cancer incidence and county-level prox-
imity to coal ash sites, it does not provide information
about the direction or magnitude of the relationship.
Lee’s L—implemented in ArcGIS Pro—offers a more
in-depth analysis of spatially varying patterns in this
relationship. Moreover, unlike the global Pearson cor-
relation coefficient, Lee’s L enables the assessment of
spatial associations between two continuous variables
by providing both global and local Lee’s L statis-
tics (Lee, 2001; Tao & Thill, 2025). The application
of spatial statistical methods is grounded in the first
law of geography or principle of spatial autocorrela-
tion, which is inherent in geographically referenced
data such as county-level cancer incidence rates and
proximity to power plants in this study (Gesler, 1986;
Griffith, 2018; Tobler, 1970). In the context of this
study, Lee’s L statistic was instrumental in identifying
regions where cancer incidence rates were spatially
associated with the distance to coal ash impound-
ments. Specifically, it helped detect areas where high
or low cancer rates corresponded with either close or
distant proximity to CCR sites. This spatial statistical
measure provided valuable insight into localized pat-
terns of environmental exposure and health outcomes,
revealing clusters of elevated or reduced cancer risk.

Finally, we employed multiple linear regression
(both ordinary least squares or OLS and spatial lag
models) to examine the relationship between cancer
incidence rates and proximity to coal ash impound-
ments, while controlling for potential confounding
factors. Spatial lag regression works by including
spatially lagged values of cancer incidence rates from
neighboring counties to address spatial autocorrela-
tion (Anselin & Rey, 1991; Kuo et al., 2019), as adja-
cent areas tend to exhibit similar cancer incidence lev-
els, thereby violating the basic assumption of linear
regression. Age-adjusted incidence rates for all cancer
types and for lung cancer specifically were used as the
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dependent variables in separate models. Independent
variables included straight-line distance to the near-
est coal ash storage site, average PM, s concentra-
tion, cancer risk scores, and exposure concentrations
for three heavy metals. Distance was used as a proxy
for proximity to coal ash storage facilities associated
with coal-fired power plants. Incorporating NATA
assessments for cancer risk scores and exposure
concentrations of arsenic, cadmium, and lead helps
account for toxic airborne emissions from coal-fired
power plants and other industrial facilities in regres-
sion models. The NATA database models emissions
and dispersion of hazardous air pollutants from coal-
fired power plants; however, it does not account for
emissions from coal-ash landfills and impoundments.
Additionally, covariates such as poverty, lack of
health insurance, lack of leisure time physical activ-
ity (physical inactivity), and binge drinking among
adults (defined as % adults who reported having>5
drinks (men) or>4 drinks (women) on>1 occasion
during the previous 30 days) (Bagnardi et al., 2015;
White et al., 2017) were considered. Other covari-
ates included smoking (defined as adults who have
smoked > 100 cigarettes in their lifetime and currently
smoke every day or on some days) (Mokdad et al.,
2017; Myers et al., 2020) and obesity prevalence
(%) (Moss et al., 2025; Pati et al., 2023). Numerous

studies have utilized county-level data and advanced
geospatial statistical methods to examine associations
between environmental risk factors and population-
based health outcomes (Chang et al., 2017; Martinez-
Morata et al., 2022; Moore et al., 2018).

Results

Results from the contingency table analysis assessed
the relationship between proximity to coal ash
impoundments and cancer risk levels (Table 1). For
example, of the 526 counties having a coal-fired
power plant or within a 10 km radius, 212 coun-
ties had lower cancer levels, while 314 counties had
higher cancer levels than the national median . In con-
trast, of the 2374 counties beyond the 10 km thresh-
old, 1227 counties had lower cancer levels, while
1147 counties had higher cancer incidence levels.
This distribution produced a statistically significant
chi-square value of 22.310 (p<0.001), indicating
that counties closer to coal ash storage facilities were
more likely to exhibit cancer incidence rates above
the national median. The analysis using alternative
distance thresholds (5, 15, and 20 km) yielded simi-
lar outcomes, indicating that counties near coal ash
storage sites were more likely to have higher cancer

Table 1 Contingency

. > Distance County groups Low cancer High cancer Total
Fabk: difference in cancer thresholds level < national level > national
1n01d§nce levels between median median
counties near coal-fired
power plants and those 5km Proximity (<5 km) 165 (196.0) 230 (199.0) 395
fiﬂﬁﬁiﬁi??ivi?ff“ Non-proximity (>5km) 1274 (1243.0) 1231 (1262.0) 2505
Total 1439 1461 2900
Chi-square =11.268, p <0.001
10 km Proximity (<5 km) 212 (261.0) 314 (265.0) 526
Non-proximity (<5 km) 1227 (1178.0) 1147 (1196.0) 2374
TOTAL 1439 1461 2900
Chi-square =22.310, p <0.001
15 km Proximity (<5 km) 254 (312.1) 375 (316.9) 629
Non-proximity (> 5 km) 1185 (1126.9) 1086 (1144.1) 2271
TOTAL 1439 1461 2900
Chi-square =27.427, p <0.001
*Each cell of the table 20 km Proximity (<5 km) 314 (379.6) 451 (385.4) 765
contains the observed Non-proximity (>5 km) 1125 (1059.4) 1010 (1075.6) 2135
frequency count, followed TOTAL 1439 1461 2900

by the expected frequency
count, in parentheses

Chi-square =30.564 (p <0.001)
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rates than those farther away or the potential harmful
effects of exposure to coal ash emitted from coal ash
impoundments.

A visualization of the geographic distribution of
cancer incidence and coal ash impoundments sug-
gests that most coal ash impoundments are concen-
trated in the eastern United States—particularly in
the Midwest, Ohio Valley, and the South, which have
historically been major coal producers, leading to the
establishment of nearby power plants (Fig. 1). Nation-
wide, there are 741 coal ash storage impoundments
associated with 302 coal-fired power plants, with
Indiana, Texas, Illinois, Kentucky, and Missouri rank-
ing as the top five states by number of impoundments.
Results from the spatial autocorrelation analysis
using global Moran’s I supported our visualization,
indicating that both age-adjusted cancer incidence
rates (Moran’s 1=0.45, p<0.001) and proximity to

coal-fired power plants (Moran’s I=0.91, p<0.001)
were spatially clustered.

The results from the more detailed bivariate spa-
tial association analysis provided a clearer and
more nuanced illustration of the spatial relationship
between distance to coal ash impoundments and can-
cer incidence (Fig. 2). A global negative correlation
was observed between cancer incidence and distance
to coal-fired impoundments (Pearson’s r=—0.237,
p=0.002; Lee’s L= —0.235), indicating that counties
closer to these sites tend to have higher cancer rates.
This finding was further supported by 449 counties
that exhibited statistically significant negative local
associations between distance to CCR sites and can-
cer incidence. These counties were highlighted in
dark red and labeled “Near - High” in the legend,
signifying high cancer rates in areas near coal ash
impoundments.

Coal Ash
Impoundments

Cancer incidence per
100,000

I 182.30 - 362.20
[ 362.21 - 426.90
[ ]426.91-472.80
[] 472.81-52350
N 52351-1248.40

Fig. 1 Annual average age-adjusted cancer incidence (2017-2021) for 2684 U.S. counties using data downloaded from the National

Cancer Institute (NCI)
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Coal Ash
Impoundments

Local Spatial Association
Category

B tlear - High (449)
Far - High (109)

B Near - Low (328)
Far - Low (331)
Mot Significant (1683)

. L
1,000 Km
| EE TR T N [ N -

Fig. 2 Map of bivariate spatial association between cancer incidence and proximity to coal ash impoundments across the U.S

The two largest clusters of these counties span
across lowa, Illinois, Missouri, Tennessee, Kentucky,
Ohio, West Virginia, and Pennsylvania. Additional
smaller clusters were identified in central Louisiana,
southern Mississippi, northeastern Florida, western
Georgia, southern North Carolina, upstate New York,
New lJersey, and central Pennsylvania. Among the
449 counties, local correlations were significant at the

99% confidence level in 45 counties, at the 95% level
in 232 counties, and at the 90% level in 172 counties
(Table 2).

In contrast, 109 counties showed significant posi-
tive local correlations, labeled “Far - High” and
mapped in pink. These counties, despite being far
from coal ash impoundments, exhibited high can-
cer levels, suggesting that other environmental or

Table 2 Number of

Count of counties by significant level of bivariate correlation

99% significant

95% significant 90% significant Significant

at all levels

Categor

counties by significance of gory

bivariate spatial association

between cancer incidence

and distance to CCR

(n=2900) Near—High 45
Far—High 61
Near—Low 112
Far—Low 211

Not significant

232 172 449
34 14 109
133 83 328
85 35 331
1683
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socioeconomic risk factors may be contributing to
cancer incidence. Additionally, 328 counties near
CCR sites showed low cancer incidence rates, while
331 counties located farther away also exhibited low
cancer rates.

Descriptive statistics for the multiple regression
models are presented in Table 3. Cancer incidence
rates varied widely across U.S. counties, ranging from
a minimum of 182.3 to a maximum of 1248.4 cases
per 100,000 population, with a mean of 459.2 and a
standard deviation of 59.1. The minimum distance to
coal ash impoundments was 0 km, indicating counties
with CCR sites located within their boundaries, while
the maximum distance was 581.7 km, with an average
of 73.1 km. Airborne cancer risk scores also showed
substantial variation: the county with the highest
score (465.1) had a value nearly 50 times greater than
that of the county with the lowest score (8.8).

As expected, county-level age-adjusted incidence
rates for all cancer types were negatively correlated
with distance to coal ash storage sites and positively
correlated with airborne cancer risk scores, exposure
to arsenic, smoking, obesity, physical inactivity, and
poverty rate, as indicated by the bivariate linear cor-
relation (Pearson’s r) analysis (Table 4). However,
lack of health insurance showed unexpected negative
correlation with cancer incidence, while PM, 5, expo-
sure to cadmium and lead, and binge drinking were
not significantly correlated with cancer incidence.

Results of the multiple regression model for all
cancer types supported the negative correlation
between cancer incidence and distance to CCR, indi-
cating a positive association with proximity to CCR
locations. Positive associations were also observed
for airborne cancer risk scores, smoking, binge drink-
ing, and physical inactivity. Although not statistically
significant, PM, 5, exposure to the three heavy met-
als, and obesity exhibited the expected positive coeffi-
cients with cancer incidence. In contrast, poverty and
lack of health insurance showed unexpected nega-
tive associations with cancer incidence. Overall, the
model explained 17% of the variance in overall can-
cer incidence, as indicated by the adjusted R-squared
value. The results of spatial lag model improved the
explanatory power of the OLS model indicated by a
larger R-square value (0.296) and the significant spa-
tially lagged incidence rates from nearby counties,
which represents spatial autocorrelation. Moreover,
it is noteworthy that distance remained significant in
the spatial lag model after spatial autocorrelation and
other confounding factors have been adjusted.

The OLS regression model for lung cancer inci-
dence revealed expected associations with proximity
to CCR locations, PM, s concentrations, exposure to
arsenic, smoking, binge drinking, and lack of physical
activity (Table 5). Conversely, airborne cancer risk
score and lead exposure were not significant. Unex-
pected inverse associations were observed for cad-
mium exposure, obesity, poverty, and lack of health

Table 3 Descriptive

o Variables Min Max Mean S.D

statistics of cancer

incidence, proximity to . Dependent variable

E’fzzg‘]’gm’ and covariates All cancer incidence rates per 100,000 1823 12484 4592 59.1
Independent variables
Distance to coal ash storage facility (km) 0 581.7 73.1 91.3
PM, 5 (ug/m®) 1.3 39.1 7.7 2.1
Airborne cancer risk score (per million) 8.8 465.1 27.5 13.4
Exposure concentration of arsenic (ng/m?) 0.001 0.9 0.03 0.03
Exposure concentration of cadmium (ng/m?) 0.0005 1.7 0.001 0.04
Exposure concentration of lead (ng/m®) 0.011 33 0.2 0.1
Smoking rate among adults (%) 9.1 40.3 21.7 4.1
Binge drinking among adults (%) 9.8 272 18.1 3.2
Obesity rate among adults (%) 15.7 50.1 352 4.6
Lack of physical activity among adults (%) 10.0 44.9 27.4 5.4
Poverty rate (%) 0 49.4 10.9 5.5
Lack of health insurance (%) 6.3 46.6 16.0 5.5
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Table 4 Results of multiple regression of age-adjusted all cancer incidence rates against proximity to ash storage facilities and other

environmental risk factors

Variables Pearson’s r with all ~ OLS model for all cancer rates Spatial lag model

cancer rates (n=2313)

Coefficient Std. error

Intercept na 268.668*** 18.216 147.044 %%
Distance to coal ash storage sites (km) —0.24 %% —0.086%** 0.014 —0.053%#**
Airborne cancer risk scores (per million) 0.120%%* 0.412%%* 0.100 0.247%%*
PM, 5 (ug/m>) —0.002 0.768 0.614 0.638
Exposure concentration of arsenic (ng/m?) 0.053* 45.485 39.665 46.391
Exposure concentration of cadmium (ng/m?) 0.019 23.782 30.593 23.505
Exposure concentration of lead (ng/m?) 0.030 10.726 8.050 9.310
Smoking rate among adults (%) 0.266%** 1.642%* 0.531 1.224%*
Binge drinking among adults (%) -0.034 3.172%%% 0.540 2.372%%%
Obesity rate among adults (%) 0.243%** 0.491 0.404 0.593
Physical inactivity among adults (%) 0.257#%** 3.827%%* 0.545 2.209%**
Poverty rate (%) 0.083#%* —1.223%%* 0.339 —0.730*
Lack of health insurance (%) —0.072%** — 1.598*%* 0.277 —0.559%
Spatially lagged cancer rates (per 100,000) n.a. n.a. n.a. 0.366%**
Adjusted R-Squared 0.170 0.296
Global Moran’s I among residuals 0.336 (»p<0.001)

“Denotes statistically significant at the 0.05 level while **denotes at the 0.01 level and ***denotes at the 0.001 level. Multicollinear-

ity among the independent variables was not a concern, as all variance inflation factor (VIF) values were below 7.5

Table 5 Results of multiple regression of age-adjusted lung cancer incidence rates against proximity to ash storage facilities and

other environmental risk factors

Variables Pearson r with lung  OLS model for lung cancer rates Spatial lag model

cancer rates (n=2163)

Coefficient Std. error

Intercept n.a —9.286* 4.321 —22.196%**
Distance to coal ash storage facility (km) —0.307%** —0.026%** 0.003 —0.012%*%*
Airborne cancer risk score (per million) 0.119%%%* 0.014 0.023 -0.010
PM, 5 (ug/m®) —-0.026 0.502%* 0.156 0.364+*
Exposure concentration of arsenic (ng/m?) 0.011 23.370% 9.088 19.933*
Exposure concentration of cadmium (ng/m?) —0.051%* —8.824 6.961 —1.846
Exposure concentration of lead (ng/m®) —0.045% 0.669 1.845 1.119
Smoking rate among adults (%) 0.665%* 2.304%%* 0.127 1.710%**
Binge drinking among adults (%) —0.267%** 0.299%* 0.128 0.437%*
Obesity rate among adults (%) 0.467%** —0.208%* 0.094 —0.065
Physical inactivity among adults (%) 0.590%** 1.263%%** 0.128 0.691%#%*
Poverty rate (%) 0.346%** —0.546%** 0.083 —0.324%%*
Lack of health insurance (%) 0.062%* —0.414%** 0.066 —0.052
Spatially lagged lung cancer incidence n.a. n.a. n.a. 0.416%**
Adjusted R-squared 0.514 0.611
Global Moran’s I among OLS residuals 0.339 (p<0.001)

@ Springer



85 Page 10 of 16

Environ Geochem Health (2026) 48:85

insurance. Overall, the lung cancer model explained
more than 51% of the variance in incidence rates
across U.S. counties. The inclusion of spatially lagged
values of lung cancer incidence from nearby counties
improved model performance, while the negative cor-
relation between cancer incidence and distance, as
well as the positive correlations with smoking, drink-
ing and physical inactivity, remained significant.

Discussions

This national study of the spatial associations
between cancer incidence rates and proximity to
coal-fired power plants and their affiliated coal ash
impoundments has the following scientific merits:
First, conducting a geographic study using national
datasets (i.e., NCI's cancer registries, EPA, and CDC
PLACES) allows us to detect broad spatial patterns,
especially the disparities in cancer rates between
counties in proximity to coal-ash impoundments and
counties that are farther away. Second, the research
design of incorporating three complementary spa-
tial analysis approaches—contingency table analysis,
bivariate spatial association, and multiple regres-
sion—provides a rigorous framework for hypoth-
esis testing. Third, the ecological approach facilitates
hypotheses generation (e.g., whether cancer incidence
is elevated near clusters of impoundments), which can
justify more resource-intensive individual-level stud-
ies in the future. Moreover, because both exposure
and health outcomes are measured at the population
level, findings from this study directly inform pub-
lic health burden and policy decisions (e.g., land use
zoning, remediation priorities), issues that regulators
typically address first. Importantly, given the toxic
nature of coal ash, its widespread distribution across
thousands of communities (Longest et al., 2022), and
the absence of strict EPA regulation, national research
on this topic provides critical evidence to support
stronger regulatory measures and remediation efforts
aimed at preventing environmental contamination and
protecting the health of nearby residents.

The results of contingency table analysis indicate
that counties that contain or near coal ash impound-
ments were significantly more likely to exhibit higher
cancer incidence levels than counties farther away,
regardless of the distance thresholds applied. Bivari-
ate spatial associations further revealed clusters of

@ Springer

counties with significant positive local correlations
between proximity to coal ash sites and cancer inci-
dence. These findings align with previous studies that
have documented the adverse impacts of proximity
to coal-fired power plants and cancer clusters across
the U.S. (Goodman et al., 2012; Guo et al., 2024;
Luo et al., 2025; Moore et al., 2017; Reynolds et al.,
1996). For example, a study in the Appalachian Coal-
Mining Region identified three clusters of counties
with higher-than-expected cancer rates. One of these
clusters included several counties in the Louisville,
Kentucky, metropolitan area (Christian et al., 2011).

While the spatial regression model explained less
than 30% of the variance in total cancer incidence, it
explained over 61% of variance in lung cancer inci-
dence. The substantial increase in explanatory power
underscores the value of focusing on specific cancer
types using disaggregated data in future research. In
both the total cancer and lung cancer models, dis-
tance to coal ash impoundments showed significant
and negative associations, even after adjusting for
other confounding factors and spatial autocorrelation.
These findings support our hypothesis that proxim-
ity to coal ash impoundments is linked to increased
cancer risks. Furthermore, cancer incidence for both
total cancer and lung cancer were significantly associ-
ated with smoking, drinking, and physical inactivity,
which corroborate prior research on these relation-
ships (Guo et al., 2024; Moss et al., 2025). The lung
cancer model demonstrated significant positive asso-
ciations between cancer incidence and PM, 5, arsenic
concentration, as well as airborne cancer risk scores,
highlighting specific environmental risk factors for
the disease.

Several potential explanations may account for
the weak associations observed between heavy
metal exposure and cancer incidence. First, the data
on metal exposures were assessed for a single year,
rather than using long-term cumulative measures.
Cancer typically develops because of chronic expo-
sure to risk factors over extended periods. Second,
EPA’s NATA data model only airborne exposure,
overlooking other critical pathways such as contami-
nated drinking water and soil. Industry data indicates
that approximately 90% of coal ash impoundments
contribute to groundwater contamination by nearly
two dozen heavy metals, often exceeding health
thresholds set by the EPA (Sierra Club, 2014). To
fully reveal the health impacts of coal ash exposure,
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future research should incorporate comprehensive
cumulative exposure assessments that capture long-
term contamination across multiple environmental
pathways including air, water, and soil (Bailey et al.,
2025). Such integrative approaches are critical for
evaluating aggregate risks from coal ash constituents,
particularly toxic heavy metals.

The findings in this study were inconsistent with
the existing studies that suggest linkages between
cancer incidence and poverty and lack of health
insurance (Boscoe et al., 2014; Hall et al., 2022).
Although it may seem counterintuitive, U.S. counties
with higher poverty rates and lower health insurance
coverage often report lower cancer incidence rates.
This pattern is largely attributable to underdiagnosis
resulting from limited access to healthcare and pre-
ventive services such as screening (Marlow et al.,
2009). Certain cancers—Ilike cervical, liver, and
Kaposi sarcoma—are more prevalent in low-income
areas due to factors such as infectious agents, envi-
ronmental exposures, and inadequate vaccination or
screening (Amboree et al., 2024). In contrast, cancers
such as melanoma, thyroid, and testicular are more
commonly diagnosed in wealthier populations, likely
reflecting lifestyle differences and greater access to
early detection (Wagle et al., 2025).

This study has several additional limitations. First,
the results may be affected by under-reporting of coal
ash storage sites, as data are based on disclosures
required under the 2015 Coal Ash Rule.

Following years of legal battles and grassroots
pressure, the U.S. EPA implemented a new regulation
in 2024 that expanded federal oversight and cleanup
mandates to include hundreds of older coal ash land-
fills and ponds previously exempt, many of which had
been contaminating groundwater with toxic waste.
This new rule closes loopholes in the 2015 Coal Ash
Rule, which had left about half of all coal ash unregu-
lated and allowed coal-fired power plants nationwide
to sidestep cleanup responsibilities. EarthJustice has
identified as many as 1271 “legacy coal ash sites scat-
tered in 30 states which were not regulated by the
2015 Coal Ash Rule (EarthJustice, 2024a). Legacy
coal ash sites refer to CCR impoundments—such
as ponds and landfills—located at power plants that
ceased operation before October 19, 2015. Moreo-
ver, residents and communities experiencing multiple
types of exposure may face heightened risks com-
pared to those exposed only to coal-fired power plants

and coal ash storage facilities. Explicitly incorporat-
ing these potential confounders and effect modifiers
will enhance the rigor and validity of the study.

Second, using distance as a proxy for proximity
to coal ash impoundments is limited by the arbitrary
nature of distance thresholds used to define “proxim-
ity” and the challenge of determining a single “safe”
distance. Factors such as meteorological and hydro-
logical conditions (e.g., wind direction and speed,
precipitation, and soil permeability) and plant-spe-
cific characteristics, including emissions controls and
the lining or capping status of coal ash storage facili-
ties, can significantly influence exposure risk. For
example, Miiller et al. (2022) indicates a carcinogenic
risk associated with arsenic exposure extending up to
nearly 10 km from the coal-fired power plant, while
Yang et al. (2017) suggested that the health risk of
power-fired power plants could reach as far as 20-30
miles away. While coal-fired power plants contribute
to air pollution linked to increased lung cancer risk, a
study in Kansas found that proximity alone was not a
significant predictor of age-adjusted lung cancer inci-
dence rates when controlling other factors like smok-
ing, age, poverty, and wind patterns (Ige et al., 2024).

Third, reliance on aggregated county-level cancer
incidence data obscures within-county variability
and limits access to detailed covariates such as race,
age, gender, lifestyle factors, and other socioeco-
nomic risk determinants, making it difficult to fully
control for confounding. Furthermore, cancer reg-
istries may experience delays or underreporting in
certain counties. Future research should incorporate
individual-level data through community-based stud-
ies to obtain more precise measures of cancer diag-
nosis and environmental exposures. In particular,
future studies should examine racial/ethnic dispari-
ties in cancer incidence in relation to exposure to coal
ash, as the environmental injustice literature has long
highlighted that communities of color and economi-
cally disadvantaged populations face disproportionate
exposure to environmental pollutants, exacerbating
racial health disparities including cancer (Buzzelli &
Jerrett, 2003; Chakraborty & Maantay, 2011; Daouda
et al., 2021; Moore et al., 2018). For example, analy-
ses using disaggregated cancer incidence rates have
indicated elevated cancer rates among Black popula-
tions, who predominantly reside in segregated neigh-
borhoods (Poulson et al., 2024).
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Despite its limitations, this study reinforces exist-
ing evidence of elevated cancer risks among com-
munities located near coal-fired power plants and
associated coal ash impoundments, likely due to
chronic exposure to coal ash contaminants containing
carcinogenic heavy metals. To address these weak-
nesses, future research should employ more accurate
and representative measures of proximity and expo-
sure to better assess the adverse health impacts of
coal ash. Beyond heavy metals, future studies should
also investigate the radiological risks of coal ash,
as recent research has raised concerns about health
hazards associated with its reuse in products such as
cement, concrete, and landscaping material (Turhan
& Jamasali, 2024). Likewise, emerging proposals to
extract rare earth elements from coal ash may intro-
duce additional environmental and health risks if not
carefully managed (Briffa et al., 2020; Slavkovi¢-
Beskoski et al., 2024).

Conclusion

Across the United States, many communities face
environmental health challenges due to their prox-
imity to coal-fired power plants and associated coal
ash disposal sites, which release toxic substances
such as arsenic, mercury, and lead into the environ-
ment. Limited national-level research has investigated
if residential proximity to coal ash impoundments
was related to elevated risks of cancer. Building on
the existing literature, this study examined the link-
ages between cancer incidence and proximity to coal
ash storage facilities as well as exposure to airborne
heavy metals while accounting for other socioeco-
nomic, environmental, and behavioral risk factors.
The findings of this empirical analysis shed new light
on the link between exposure to coal ash and cancer
risk, offering valuable insights that can inform public
health policies and help address the disproportionate
challenges faced by communities near coal ash stor-
age sites, which are more vulnerable than those far-
ther away.

Given the toxic nature of coal ash, the U.S. EPA
only recently mandated coal-fired power plants to
properly manage and dispose of it, including the
safe closure of coal ash impoundments in favor of
cleaner and more sustainable approaches (Kumar
& Reddy, 2024). Although coal-fired power plants

@ Springer

have been gradually phased out in favor of cleaner
energy sources, thousands of coal ash storage facili-
ties including both active and legacy sites continue
to pose long-term environmental and health risks to
nearby communities due to inadequate treatment and
regulatory oversight. Therefore, there is an urgent
need for additional research and stronger policy inter-
ventions to mitigate the environmental health risks
associated with coal ash, given the enduring legacy of
coal-fired power generation.
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